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Abstract. An iterative topographical Multilevel Single Linkage (TMSL) method has been introduced. 
The approach uses topographical information on the objective function, in particular the g-nearest- 
neighbour graph. The algorithm uses evenly distributed points from a Halton sequence of uniform 
limiting density. We discuss the implementation of the algorithm and compare its performance with 
other well-known algorithms. The new algorithm performs much better (in some cases several times) 
than the Multilevel Single Linkage method in terms of number of function evaluations but is not quite 
so competitive with respect to CPU time. 
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1. Introduction 

The global minimization problem for a function f : f~ C R n -+ R is to find x* 
such that 

f ( x*)  < f (x ) ,  Vx E [2. (1) 

It is also assumed that the problem is essentially unconstrained, that is, the global 
minimum f* of f is attained in the interior of fL 

In recent years, a number of deterministic and stochastic algorithms have been 
proposed (T6m and Zilinskas, 1989; Floudas and Pardalos, 1992; Horst and Tuy, 
1990; Ratschek and Rokne, 1988) for solving (1). Deterministic algorithms are gen- 
erally concerned with searching the whole region of feasible points of the objective 
function f and give a guarantee of successfully finding the global minimum only 
under highly restrictive conditions on f (for example, Lipschitz continuity with 
known Lipschitz constant). On the other hand, stochastic methods involve ran- 
dom sampling or a combination of random sampling and local search. They can be 
applied in less restrictive situations and with greater reliability. A probabilistic con- 
vergence guarantee is the most attractive and salient feature of stochastic methods. 
One type of stochastic approach is Simulated Annealing (SA). SA type algorithms 
for continuous global optimization have been proposed by a number of authors. 
For example, Vanderbilt and Louie (1984), B ohachevsky et al. (1986) and Aluffi- 
Pentini et al. (1985). More recently, Dekkers and Aarts (1991) derived a continuous 
SA algorithm which is theoretically similar to discrete SA. Among the stochastic 
methods various superior clustering variants of Multistart (MS) designed by Rin- 
nooy Kan and Timmer (1987, 1987a) are well known. The aim of these clustering 
algorithms is to apply local search more efficiently, that is to apply local search 
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only once in every region of attraction. Among them the Multilevel Single Linkage 
(MSL) method is known to be the most successful adaptation (Timmer, 1984). 
Recently, however, T6rn and Viitanen (1992) have developed a new Topograph- 
ical Algorithm (TA). In their new algorithm they use topographical information 
on the objective function in identifying basins of local minima from the centre 
(graph minima) of each of which a local search is started. The TA algorithm is 
non-iterative and based on exploration of the search space. The graph minima are 
constructed by looking at the function values of the g-nearest neighbour points for 
each point of a sample of size N. The aim of TA is to construct a topographical 
graph and then start minimization from just one point in each identified basin. 
But for a general purpose algorithm a fixed value of g would be too restrictive to 
represent the appropriate number of local minima for any function. Moreover, it 
would be increasingly difficult to construct the exact graph minima of functions, 
especially when the number of dimensions of the functions increases. In principle, 
therefore, both MSL and TA cause errors of the following nature. 

Type I Error, Local search will be repeated in some region of attraction. 

Type II Error, Local search will not start in some region of attraction even if a 
sample point has been located in that region of attraction. 

Rinnooy Kan and Timmer (1987) argued that in MSL the above two types of 
error would not occur after a sufficiently large number of iterations. But clearly 
continuing the search for too large a number of iterations is wasteful. Furthermore, 
in MSL extended samples are considered and the resulting overheads could also 
rise to a prohibitive level. The question therefore arises of whether these errors can 
be avoided in every iteration if we use topographical information on the underlying 
function in a sensible way. 

We, therefore, propose a new algorithm that uses MSL together with topograph- 
ical information on the objective function. This adaptation of MSL will guarantee 
that a local search will start at a point with a relatively low function value, thus 
ensuring that sample reduction is no longer necessary. The paper is organised in 
the following way. In Section 2 we introduce the proposed algorithm. In Section 3 
we investigate the choice of user supplied parameters for the new algorithm and 
compare it numerically with MSL and also with some other leading algorithms. 
Finally in Section 4 we make some concluding remarks. 

2. The New Algorithm 

The MSL method is superior to other clustering variants of MS because of the 
fact that it uses function values in identifying clusters (Rinnooy Kan and Timmer 
1987a). However, the mechanism of the algorithm is so simple that it turns out to 
be possible to avoid the clustering concept altogether (Rinnooy Kan and Timmer 
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1987a). In MSL the decision to start a local search in the k-th iteration depends 
only on the threshold 

(2) 

where cr is a constant, ra(fl) is the Lebesgue measure of f~, N is the total number 
of sample points and F is the gamma function. This threshold is derived using 
asymptotic considerations. A point is taken as the starting point for local optimiza- 
tion if there is no other sample point, within the critical distance rk, with lower 
function value. This check however, is carried out for all reduced sample points. 
The purpose of generating a comparatively large number of points and the sample 
reduction strategy in MSL is to make sure that: 

A. The search region has been explored thoroughly so that points are drawn in 
every region of attraction. 

B. A fraction of the points is discarded so that only points with relatively low 
function values are left for scrutiny. 

We, however, propose using the selection of graph minima instead of sample 
reduction, together with evenly distributed sample points, to achieve conditions A 
and B above. Having found the reduced sample consisting of graph minima a local 
search is then carded out from each of a selected subset of the graph minima. No 
attempt is made to find the complete topograph of the function so the value of # 
is not so critical as it is in TA. Our experience shows however that a reasonably 
small value for # is generally to be recommended. We believe that this strategy is 
efficient because the size of the reduced sample depends on the choice of # and the 
particular function at hand as opposed to an empirical fraction 7kN (7 = 0.2) as 
in MSL. 

The basic principle of TA is to cover the search region with sample points as 
uniformly as possible. The greater the number of points, the greater will be the 
possibility of the graph representing all essential local minima. In our algorithm we, 
therefore, use a Halton sequence (Shaw, 1988) which is more evenly distributed 
than the pseudo-random numbers and has uniform limiting density. At the start 
of a new iteration we add all local minimizers found previously to the new set 
of sample points and then the construction of the graph minima takes place. In 
every successive iteration, therefore, local minima from previous iterations could 
become graph minima. In principle, we use previous sample points in an implicit 
way by representing them by the local minima they produced. 

Because the Halton sequence is uniform asymptotically many of the theoretical 
results for MSL apply also to TMSL (Ali, 1994). We now give a stepwise descrip- 
tion of TMSL on a typical iteration k with w different minima found previously. 
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TABLE I. Test functions 

Symbol Test Number of local Dimension 

Function minima (m) (n) 

BR Branin 3 (all same f* )  2 

GP Goldstein and Price 4 (all different f* )  2 

$5 Shekel5 5 " 4 

$7 Shekel7 7 " 4 

$10 Shekel10 10 " 4 

H3 Hartman3 4 " 3 

H6 Hartman6 4 " 6 

Step 1. Generate N sample points from the Halton sequence over the search region 
fL Compute f at each point. Let M be the set of sample points plus the w 
minimizers found previously. 

Step 2. Construct a topographical graph and find graph minima for these M points. 

Step 3. A graph minimum is a 'start' point for local search if it is greater than 
the critical distance rk from any point with smaller f value and if it is not a 
previously obtained local minimizer. 

Step 4. Carry out a local search from each such point. If new local minima are 
found then update w accordingly. 

w(kN-1)  < ZO q- 1 Step 5. Is stopping condition (Boender and Rinnooy Kan, 1987) kN-w-2 - -  

satisfied? Yes, stop. No, go to Step 1. 

3. Numerical Results 

In this section we compare our numerical results with MSL and other recent 
algorithms. The computing has been carded out on the HP9000/870 computer at 
Loughborough University of Technology using the programming language PAS- 
CAL. The test functions (see Table I) have been taken from Dixon and Szeg6 
(1978), a set of commonly used functions in global optimization. We use limited 
memory BFGS, from the NAG Library routine (version E04DGF) for local search 
with a tolerance on the gradient of 10 -1~ 

3.1.  CHOICE OF PARAMETERS IN T M S L  

The main user supplied parameters for TMSL are N, the sample size, a in rk 
and g the number of nearest neighbour points in the topographs. We carded out 
an extensive series of tests to see the effects of varying these parameters in the 
algorithm. We considered; N = 10(n - 2), 10(n - 1), 10n, 10(n + 1), 15n and 
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TABLE II. Results for TMSL on $5 

N cr CPU LS LM FE g 

50 2 0.45 6 4 243 2 
4 0.40 2 2 117 2 
2 0.52 6 3 238 3 
4 0.52 2 2 117 3 
2 0.69 3 3 146 4 
4 0.65 2 2 117 4 
2 0.66 2 2 118 5 
4 0.70 1 1 90 5 
2 0.74 2 2 119 6 
4 0.74 1 1 90 6 
2 0.84 2 2 119 7 
4 0.84 1 1 90 7 
2 0.90 1 1 90 8 
4 0.90 1 1 90 8 
2 0.90 1 1 90 9 
4 0.90 1 1 90 9 
2 0.90 1 1 90 10 
4 0.90 1 1 90 10 

353 

15(n + 1) (where these were  distinct), ~r = 2, 4 (Rinnooy Kan and Timmer,  1987, 
1987a), g = 2, 3, . . . ,  N - 1. These parameter  values were  used for each of  the 7 test 
functions described in Table I. The general nature of  the results was quite similar 

for  each test function and so the results for only one representative function for  a 
specific value of  N are shown in Table I I  (the full set o f  results can be found in Ali, 

1994). We use  fol lowing notation: LS is the number  of  local searches performed,  
L M  is the number  of  local min ima  found, FE is the number  of  function evaluations 
and C P U  is the cpu time. 

It  is clear f rom Table I I  that ~r = 4 is much  better than ~r = 2 for smaller  values 

of  g but this effect  falls off  as g increases. The global op t imum was reached for 
a lmost  all values of  g (Ali, 1994) but as g increases towards N - 1 the number  of  
function evaluations decreased to a smallest  value at which L S  = L M  = 1 (or 

possibly 2 for  some test functions) and remained static subsequently; however,  as 
FE decreased the cpu t ime increased. 

Table I I I  summarizes  the interaction between g and N again for a typical 
function $5. The results given here are the values of  g for which the smallest  
number  of  function evaluations ment ioned above was achieved. It  appears  that 
N = 10n = 40 is the best  sample  size for this function a result which was 
general ly true for  all the 7 test functions. 

It was  interesting therefore to see how the best value for g varied amongst  the 
7 test functions. Table IV summarizes  this effect for N = I0n .  
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TABLE Ill. Summary of results showing effect 
of# for different N on $5 

N tr CPU LS LM FE g 

75 2 3.00 2 1 127" 8 
4 3.01 2 1 98* 8 

60 2 1.96 1 1 100 11 
4 1.98 1 1 100 11 

50 2 0.90 1 1 90 8 
4 0.90 1 1 90 8 

40 2 0.48 1 1 77 8 
4 0.48 1 1 77 8 

30 2 0.22 2 2 100 7 
4 0.22 2 2 100 7 

20 2 0.11 2 2 90 7 
4 0.11 2 2 90 7 

* indicates only a local minimum was obtained 

TABLE IV. Best g for 
N = 10n 

g n m 

BR 17 2 3 

GP 5 2 4 
$5 8 4 5 
$7 38* 4 7 
$10 22 4 10 
H3 12 3 4 
H6 54 6 4 

* This was the largest val- 
ue for g to produce the 
global minimum 

C l e a r l y  there  is no  obv ious  connec t i on  b e t w e e n  the bes t  va lue  o f  g and  the  

d i m e n s i o n ,  n ,  or  the  n u m b e r  o f  loca l  m in ima ,  m ,  bu t  the  na tu re  o f  the  func t ions  is 

i m p o r t a n t  s ince  fo r  s o m e  func t ions  to ge t  the  bes t  va lue  o f  g it has  to be  i n c r e a s e d  

unt i l  i t  is c l o s e  to N - 1. W h e n  g = N - 1, o f  course ,  the on ly  g raph  m i n i m a  are  

the  po in t ( s )  wi th  s m a l l e s t  func t ion  value(s) .  
In  s u m m a r y ,  the  i n f o r m a t i o n  on  the use  o f  u se r  supp l i ed  p a r a m e t e r s  that  was  

o b t a i n e d  f r o m  the n u m e r i c a l  test  func t ion  resul ts  was  as  fo l lows .  N ---- 10n was  a 

r e a s o n a b l e  s a m p l e  size.  tr = 4 was  the  bes t  va lue  to use  for  sma l l  va lues  o f  g bu t  

as g i n c r e a s e d  there  was  l i t t le  d i f f e rence  b e t w e e n  tr = 2 and o" = 4. A l l  va lues  o f  g 

e v e n t u a l l y  p r o d u c e d  g l o b a l  o p t i m a  (excep t  for  va lues  o f  g ve ry  c lo se  to N - 1 for  

$7)  and  the n u m b e r  o f  func t ion  eva lua t ions  r equ i r ed  d e c r e a s e d  as g i n c r e a s e d  b u t a t  
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TABLE V. Comparison of 
MSL and TMSL 

FE CPU 

MSL 3163 2.77 
MSLH 2535 1.62 
MSLG 799 6.18 
TMSL 674 5.38 

TABLE VI. Bifunctional catalytic reactor 

N FE CPU f* 

MSL 150 11252 28676 10.094 (9.90,9.86) 
TMSL 150 6 0 1 3  14361 10.094 

the expense of extra cpu time. Choice of 9 would therefore seem to be dependent on 
the cost of computing the function values. Extrapolation of these suggestions must 
clearly be treated with caution since the test functions used are all well behaved 
mathematical functions with a relatively small number of local minima. 

3.2. COMPARISON OF MSL AND TMSL 

The major differences between MSL and TMSL lie in the use of the Halton 
sequence instead of  a pseudo-random sequence and the use of the 9-topograph 
rather than sample reduction. To judge the relative importance of these two changes 
we compared MSL with TMSL and also with MSLH, which is MSL with Halton 
instead of random sampling and with MSLG, which is MSL with the 9-topograph 
replacing sample reduction. We used the same test functions as previously and have 
totalled the number of function evaluations and cpu time for all seven functions 
(the detailed results can be found in Ali, 1994) in Table V. 

Clearly the dominating factor is the introduction of the 9-topograph and the 
reduction in function evaluations by a factor of about 5 for TMSL is offset by it 
requiring about twice the cpu time. In the comparisons we tried to be as 'fair' as 
we possibly could to all four methods but fully realize the difficulties involved, 
particularly with respect to the stopping condition used (All, 1994). 

In addition to the test functions we also used a number of 'real-life' problems 
with which to compare the methods. These included two chemical reactor problems, 
a problem involving the statistics of pig-fiver behaviour, an atomic, many-body 
potential problem and a vehicle suspension problem. We show preliminary results 
for one of these problems in Table VI. This problem concerned a bifunctional 
catalytic reactor and has 25 local minima with a global minimum of value 10.09. 
(For full details see Ali, 1994.) 
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TABLE VII. Listing of different methods 

M. M. ALI AND C. STOREY 

Method Name Reference 

A 
B 

C 
D 
E 
F 
G 
H 

I 

J 

Multistart (MS) 
Controlled Random Search (CRS 1) 
Density Clustering 
Clustering with distribution function 
Multilevel Single Linkage (MSL) 
Simulated Annealing (SA) 
Modified Controlled Random Search (CRS4) 
Modified Controlled Random Search (CRS5) 
Aspiration based Simulated Annealing (ASA) 
TMSL 

Rinnooy Kan and Timmer (1984) 
Price (1978) 
TOm (1978) 
De Biase and Frontini (1978) 
Rinnooy Kan and Timmer (1987a) 
Dekkers and Aarts (1991) 
Ali and Storey (1995) 
Ali and Storey (1995) 
Ali (1994) 
This paper 

TABLE VIII. Comparison of TMSL with 9 currently available methods 

Method GP BR $5 $7 S10 H3 H6 Total 

A 4400 1600  6 5 0 0  9 3 0 0  11000 2500  6000  41300 
B 2500 1800  3 8 0 0  4900 4400 2400  7600  27400 
C 2499 1558 3 6 4 9  3 6 0 6  3 8 7 4  2584 3447  21217 
D 378 597 620 788 1160 732 807 5082 
E 307 206 576 334 1388 166 324 3301 
F 563 505 365* 558 797 1459 4648 8895 
G 436 279 1423 1238 1213 545 1581 6715 
H 402 346 1866 1719 1709 343 1321 7706 
I 834 135 524 524 524 451 558 3550 
J 53 46 98 116 100 60 127 600 

* Local minima found 

The results for M S L  are the average of  four runs, 2 of  which produced minima 

of  9.90 and 9.86 and the other two the correct global minimum. For this problem 

TMSL exhibits superiority in both FE and cpu time. Detailed analysis of  the results 
showed that the M SL method had to find more local minima than TMSL. Results 

from the other practical problems confirmed the competiveness of  TMSL (Ali, 

1994), especially in terms of  number of  function evaluations. 
We also compared TMSL with the currently available algorithms given in 

Table VII  using the number of  function evaluations as a basis for comparison and 
the results are shown in Table VIII  where the data other than that for MSL and 
T M S L  has been taken from the references listed in Table VII. In Table VIII,  the 
data for TMSL has been taken as N = I0n ,  a = 4 and g = 7. The data for MSL 

has been taken as N = 100, 7 = 0.2 and a = 2. 
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4. Conclusion 

We have developed a new global optimization algorithm based on MSL and topo- 
graphical global optimization which seems to be robust and competitive with MSL. 
Research is continuing into the choice of user supplied parameters for the new 
method, on difficult practical problems, and into the effect of different stopping 
conditions. 

Acknowledgement 

The authors thankfully acknowledge useful suggestions from A. T6rn of Abo 
Akademi, Finland. 

References 

Ali, M. M. (1994), Some Modified Stochastic Global Optimization Algorithms with Applications, 
Ph.D. Thesis, Loughborough University of Technology, Loughborough, Leicestershire, England. 

Ali, M. M. and Storey, C. (1995), Modified Controlled Random Search Algorithms, to appear in 
International Journal of Computer Mathematics, 54, No. 3/4. 

Aluffi-Pentini, E, Parisi, V., and Zirilli, E (1985), Global Optimization and Stochastic Differential 
Equations, Journal of Optimization Theory and Applications 47, 1-16. 

Boender, C. G. E. and Rinnooy Kan, A. H. G. (1987), Bayesian Stopping Rules for Multistart Global 
Optimization Methods, Mathematical Programming 37, 59-80. 

Bohachevsky, M. E., Johson, M. E., and Stein, M. L. (1986), Generalized Simulated Annealing for 
Function Optimization, Technometrics 28, 209-217. 

Dekkers, A. and Aarts, E. (1991), Global Optimization and Simulated Annealing, Mathematical 
Programming 50, 367-393. 

De Biase, L. and Frontini, E (1978), A Stochastic Method for Global Optimization: Its Structure and 
Numerical Performance, in Towards Global Optimization 2, Dixon, L. C. W. and Szeg6, G. E 
(eds.), North-Holland, Amsterdam, Holland, 85-102. 

Dixon, L. C. W. and Szeg0, G. E (1978), Towards Global Optimization 2, North-Holland, Amsterdam, 
Holland. 

Floudas, A. and Pardalos, M. (eds.) (1992), Recent Advances in Global Optimization; Princeton 
University Press, U.S.A. 

Horst, R. and Tuy, H. (1990), Global Optimization (Deterministic Approaches), Springer-Verlag, 
Berlin. 

Price, W. L. (1978), A Controlled Random Search Procedure for Global Optimization, in Towards 
Global Optimization 2, Dixon, L. C. W. and Szeg0, G. E (eds.), North-Holland, Amsterdam, 
Holland, 71-84. 

Ratschek, H. and Rokne, J. (1988), New Computer Methods for Global Optimization, Ellis Horwood, 
Chichester. 

Rinnooy Kan, A. H. G. and Timmer, G. T. (1984), Stochastic Methods for Global Optimization, 
American Journal of Mathematical and Management Sciences 4, 7-40. 

Rinnooy Kan, A. H. G. and Timmer, G. T. (1987), Stochastic Global Optimization Methods; Part I: 
Clustering Methods, Mathematical Programming 39, 27-56. 

Rinnooy Kan, A. H. G. and Timmer, G. T. (1987a), Stochastic Global Optimization Methods; Part II: 
Multilevel Methods, Mathematical Programming 39, 57-78. 

Shaw, J. E. H. (1988), A Quasirandom Approach to Integration in Bayesian Statistics, The Annals of 
Statistics 16 (2), 895-914. 

Timmer, G. T. (1984), Ph.D. Dissertation, Econometric Institute, Erasmus University, Rotterdam, 
Holland. 

TOm, A. and Zilinskas, A. (1989), Global Optimization, Springer-Verlag, Berlin. 



358 M.M. ALI AND C. STOREY 

TOm, A. and Viitanen, S. (1992), Topographical Global Optimization, in Recent Advances in Global 
Optimization, C. A. Floudas and P. M. Pardalos (eds.), Princeton University Press, Princeton 
U.S.A., 384-398. 

TOm, A. (1978), A Search Clustering Approach to Global Optimization, in Towards Global Opti- 
mization 2, Dixon, L. C. W. and Szeg6, G. P. (eds.), North-Holland, Amsterdam, Holland, 49-62. 

Vanderbilt, D. and Louie, S. G. (1984), A Monte Carlo Simulated Annealing Approach to Optimization 
over Continuous Variables, Journal of Computational Physics 56, 259-271. 


